US009164809B2

a2 United States Patent

Tsirkin et al.

US 9,164,809 B2
Oct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

VIRTUAL PROCESSOR PROVISIONING IN
VIRTUALIZED COMPUTER SYSTEMS

Michael Tsirkin, Yokneam Yillit (IL);
Dor Laor, Tel Aviv (IL)

Inventors:

Assignee: Red Hat Israel, Ltd., Raanana (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 281 days.

Appl. No.: 13/603,197

Filed: Sep. 4,2012

Prior Publication Data

US 2014/0068603 Al Mar. 6,2014

Int. Cl1.
GO6F 9/455
GO6F 9/50
U.S. CL
CPC

(2006.01)
(2006.01)

.......... GOG6F 9/5083 (2013.01); GO6F 9/45558
(2013.01); GOGF 9/5077 (2013.01); GO6F
2009/4557 (2013.01); GOGE 2209/5022
(2013.01)

Field of Classification Search
CPC GOG6F 9/45533; GOG6F 9/5083
USPC 718/1

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,589,941 B2* 11/2013 Cardonaetal. 718/105
2005/0120160 Al* 6/2005 Plouffe etal.cccoceeeeeen. 711/1
2010/0107143 Al* 4/2010 Emberling .. . 717/128
2010/0251234 Al* 9/2010 Oshinsccccocevvvnreeanenn. 718/1
2011/0145814 Al* 6/2011 Mangione-Smith .. 718/1
2012/0030407 Al* 2/2012 Pandeyetal. 7116
2012/0278800 Al* 11/2012 Nicholasetal. 718/1
2013/0067267 Al* 3/2013 Tamhaneetal. 714/4.11
2013/0191817 Al* 7/2013 Vorbach 717/150
2013/0339957 Al* 12/2013 Azametal.cccceoeveeeenn 718/1

OTHER PUBLICATIONS

In View of, Wiktionary, retrieved on Oct. 29, 2014.*
Rate, Wiktionary, retrieved on Oct. 29, 2014.*

* cited by examiner

Primary Examiner — Emerson Puente
Assistant Examiner — Charlie Sun
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A system and method for allocating additional virtual proces-
sors to virtual machines (referred to as “automatic processor
hotplug™) are disclosed. In accordance with one embodiment,
a guest operating system of a virtual machine detects when a
measure of system load exceeds a threshold. In response, the
guest operating system transmits a request to a hypervisor for
an additional virtual processor for the virtual machine.

20 Claims, 5 Drawing Sheets

=

Guest OS Monitors One or More Measures of System Load
For Each Individual Virtual Processor of Virtual Machine

|'\§o1

Does

Exceed a
Threshold
»

no

‘Any Measure For
Any Virtual Processor

Guest 0OS Computes Measures of System Load
For Each Virtual NUMA Node of Virtual Machine

Guest 08 Computes Measures of System Load
Across All Virtual Processors

Exceed a
Threshold
?

All Virtual Processors

To Block 302

US 9,164,809 B2

Sheet 1 of 5

Oct. 20, 2015

U.S. Patent

IE!
051 MHOMLAN
A
 J
08t (o]} — S
321A30 AHOWaN ﬂmw fm_w
IOVHOLS NIVI
H A A H
Y)
SZT HOSIAYIdAH
021 SO LSOH
A
\
T
HOLINOW
avo1 W3LSAS
TSI SO LS3N9
0ET WA
00T WALSAS ¥3LNAWOD

US 9,164,809 B2

Sheet 2 of 5

Oct. 20, 2015

¢ Ol
092 0%
¥OSSIOOUd [© ® & |H0SSIOONd
TVNLYIA TVNLYIA
iy
YOLINOW
Q¥OTWALSAS
SE1.50 153N
0ET WA

U.S. Patent

U.S. Patent Oct. 20, 2015 Sheet 3 of 5 US 9,164,809 B2

300
'

START

Guest OS Monitors One or More Measures of System Load and ,\3301
Detects That a Measure of System Load Exceeds a Threshold

Guest OS Transmits to Hypervisor 302
A Request for an Additional Virtual Processor For Its Virtual Machine ~

303
~J

Guest OS Receives Return Result From Hypervisor

END

FIG. 3

U.S. Patent Oct. 20, 2015 Sheet 4 of 5

START

US 9,164,809 B2

Guest OS Monitors One or More Measures of System Load
For Each Individual Virtual Processor of Virtual Machine

401
~

Any Measure For yes

Any Virtual Processor
Exceed a

Threshold
?

403

r_J

Guest OS Computes Measures of System Load
For Each Virtual NUMA Node of Virtual Machine

Does Any

Measure For Any yes

Set of Virtual Processors
Exceed a

Threshold
?

405

Guest OS Computes Measures of System Load
Across All Virtual Processors

no All Virtual Processors

Exceed a
Threshold

FIG. 4

To Block 302

U.S. Patent

Oct. 20, 2015

AN

Sheet 5 of 5

US 9,164,809 B2

/ 500

7 502 = 510
PROCESSOR
-t p! |-«—— | VIDEO DISPLAY
INSTRUCTIONS N 526
508
— 504 — — 512
MAIN MEMORY
< > ALPHA-NUMERIC
B ———
INSTRUCTIONY| ", 506 INPUT DEVICE
Y 506 Y 514
CURSOR
STATIC MEMORY | ¢———»1 |4—— | CONTROL
DEVICE
KD
)
(na]
522 / 516
NETWORK DRIVE UNIT
INTERFACE |g——— COMPUTER
DEVICE -
—p READABLE MEDIUM [T~ 524
INSTRUCTIONS |l 526
520
SIGNAL
¢——p| GENERATION
DEVICE

FIG. 5

US 9,164,809 B2

1
VIRTUAL PROCESSOR PROVISIONING IN
VIRTUALIZED COMPUTER SYSTEMS

TECHNICAL FIELD

This disclosure relates to computer systems, and more
particularly, to virtualized computer systems.

BACKGROUND

A virtual machine (VM) is a portion of software that, when
executed on appropriate hardware, creates an environment
allowing the virtualization of an actual physical computer
system (e.g., a server, a mainframe computer, etc.). The actual
physical computer system is typically referred to as a “host
machine,” and the operating system of the host machine is
typically referred to as the “host operating system.”

A virtual machine may function as a self-contained plat-
form, executing its own “guest” operating system and soft-
ware applications. Typically, software on the host machine
known as a “hypervisor” (or a “virtual machine monitor”)
manages the execution of one or more virtual machines, pro-
viding a variety of functions such as virtualizing and allocat-
ing resources, context switching among virtual machines, etc.

A virtual machine may comprise one or more “virtual
processors,” each of which maps, possibly in a many-to-one
fashion, to a central processing unit (CPU) of the host
machine. Similarly, a virtual machine may comprise one or
more “virtual devices,” each of which maps, in either a one-
to-one or one-to-many fashion, to a physical device of the
host machine (e.g., a network interface device, a CD-ROM
drive, etc.). The hypervisor typically manages these map-
pings in a transparent fashion, thereby enabling the guest
operating system and applications executing on the virtual
machine to interact with the virtual processors and virtual
devices as though they were actual physical entities.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, and can be more fully under-
stood with reference to the following detailed description
when considered in connection with the figures in which:

FIG. 1 depicts an exemplary computer system architecture,
in accordance with an embodiment of the present invention.

FIG. 2 depicts a block diagram of elements of a virtual
machine, in accordance with an embodiment of the present
invention.

FIG. 3 depicts a flow diagram of one embodiment of a
method by which a guest operating system requests an addi-
tional virtual processor for its virtual machine.

FIG. 4 depicts a flow diagram of one embodiment of a
method by which a guest operating system monitors and
detects system load conditions.

FIG. 5 depicts a block diagram of an illustrative computer
system operating in accordance with embodiments of the
invention.

DETAILED DESCRIPTION

Described herein is a system and method by which a guest
operating system (OS) of a virtual machine (VM) may
request additional virtual processors from a hypervisor, a
technique referred to as “automatic processor hotplug.” More
particularly, in accordance with one embodiment, the guest
OS monitors one or more measures of system load, and when
the guest OS detects that a measure of system load exceeds a

10

15

20

25

30

35

40

45

50

55

60

65

2

threshold, the guest OS transmits to the hypervisor a request
for an additional virtual processor.

In one embodiment, the guest operating system is modified
to perform the functions above and is recompiled to execute
on top of the hypervisor, a technique known as “paravirtual-
ization.” In one embodiment, the guest operating system
includes a system load monitor that executes special com-
mands to monitor various measures of system load, detect
when a measure of load exceeds a threshold, and, when
appropriate, transmit requests for additional virtual proces-
sors to the hypervisor. It should be noted that some alternative
embodiments may not employ such a system load monitor,
and may instead perform these functions via some other
mechanism.

In one embodiment, the measure(s) of system load may
include one or more measures for a particular virtual proces-
sor of the virtual machine, or one or more measures for a set
of virtual processors belonging to a particular virtual NUMA
node of the virtual machine, or one or more measures for all
of the virtual processors of the virtual machine, or some
combination of these measures. In one embodiment, mea-
sures for a particular virtual processor may include the num-
ber of physical CPU cycles consumed executing a particular
virtual processor, the number of context switches per unit of
time between threads executed by a particular virtual proces-
sor, the percentage of processor cycles consumed by context
switches between threads executed by a particular virtual
processor, the number of processes in a runnable state execut-
ing concurrently by a particular virtual processor, and so
forth. Similarly, measures of system load across virtual pro-
cessors belonging to a particular group (e.g., virtual proces-
sors belonging to a particular virtual NUMA node, all of the
virtual processors in the virtual machine, etc.) may include
the number of physical CPU cycles consumed executing vir-
tual processors of the group, the number of context switches
per unit of time between threads belonging to the same pro-
cess, regardless of which virtual processor of the group
executes the process; the percentage of processor cycles con-
sumed by context switches between threads executed by the
same virtual processor, regardless of which virtual processor
of'the group; the number of threads in a runnable state execut-
ing concurrently (e.g., the average number of threads in a
runnable state executed concurrently by the virtual proces-
sors of the group, the maximum number of threads in a
runnable state executed concurrently by the virtual proces-
sors of the group, etc.), and so forth.

Embodiments of the present disclosure are thus capable of
determining when it may be advantageous to request one or
more additional virtual processors for a virtual machine, and,
as a result, improve the performance of applications execut-
ing within the virtual machine when the request is granted by
the hypervisor. Advantageously, embodiments of the present
disclosure enable this functionality, referred to as “automatic
processor hotplug,” to occur dynamically, without requiring
that the virtual machine be shut down and restarted. More-
over, when a virtualized computer system hosts multiple vir-
tual machines, embodiments of the present invention may
enable more efficient mapping of the virtual processors of the
virtual machines to the physical CPUs of the system.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-

US 9,164,809 B2

3

tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving”, “monitoring”, “detecting”, “transmitting”, or
the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical (electronic)
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may com-
prise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, the present invention is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

The present invention may be provided as a computer
program product, or software, that may include a machine-
readable medium having stored thereon instructions, which
may be used to program a computer system (or other elec-
tronic devices) to perform a process according to the present
invention. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form read-
ableby amachine (e.g., a computer). For example, a machine-
readable (e.g., computer-readable) medium includes a
machine (e.g., a computer) readable storage medium (e.g.,
read only memory (“ROM”), random access memory
(“RAM”), magnetic disk storage media, optical storage
media, flash memory devices, etc.), a machine (e.g., com-

10

15

20

25

30

35

40

45

50

55

60

65

4

puter) readable transmission medium (electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.)), etc.

FIG. 1 depicts an exemplary architecture of the salient
elements of a computer system 100, in accordance with an
embodiment of the present invention. One skilled in the art
will appreciate that other architectures for computer system
100 are possible, and that the implementation of a computer
system utilizing embodiments of the invention are not neces-
sarily limited to the specific architecture depicted by FIG. 1.

As shown in FIG. 1, the computer system 100 is connected
to a network 150 and comprises one or more central process-
ing units (CPUs) 160-1 through 160-N, where N is a positive
integer, main memory 170, which may include volatile
memory devices (e.g., random access memory (RAM)), non-
volatile memory devices (e.g., flash memory) and/or other
types of memory devices, and a storage device 180 (e.g., one
or more hard disk drives, solid-state drives, etc.). In some
embodiments, main memory 170 may be non-uniform access
(NUMA), such that memory access time depends on the
memory location relative to CPUs 160-1 through 160-N.

The computer system 100 may be a server, a mainframe, a
workstation, a personal computer (PC), a mobile phone, a
palm-sized computing device, etc. The network 150 may be a
private network (e.g., alocal area network (LAN), a wide area
network (WAN), intranet, etc.) or a public network (e.g., the
Internet).

Computer system 100 runs a host operating system (OS)
120, which manages the hardware resources of the computer
system and that provides functions such as interprocess com-
munication, scheduling, memory management, and so forth.
In one embodiment, host operating system 120 also com-
prises a hypervisor 125, which provides a virtual operating
platform for virtual machine 130 and manages its execution.
It should be noted that in some alternative embodiments,
hypervisor 125 may be external to host OS 120, rather than
embedded within host OS 120, or may replace host OS 120.

Virtual machine (VM) 130 is a software implementation of
a machine that executes programs as though it were an actual
physical machine. In one embodiment, virtual machine (VM)
130 includes a guest operating system (OS) 135 that has a
system load monitor 137. Embodiments of virtual machine
130, guest OS 135 and system load monitor 137 are described
in more detail below with respect to FIG. 2. It should be noted
that although, for simplicity, a single virtual machine 130 is
depicted in FIG. 1, in some other embodiments computer
system 100 may host a plurality of VMs 130.

FIG. 2 depicts a block diagram of elements of virtual
machine (VM) 130, in accordance with an embodiment of the
present invention. As shown in FIG. 2, virtual machine 130
comprises a guest operating system (OS) 135 and one or more
virtual processors 260-1 through 260-K, where K is a positive
integer.

Guest operating system (OS) 135 comprises software that
manages the execution of programs within virtual machine
130. Each virtual processor 260 is software that emulates a
physical processor, and that maps to one of central processing
units (CPU) 160, possibly in a many-to-one fashion. It should
be noted that the number of virtual processors may or may not
be the same as the number of CPUs (i.e., K may or may not
equal N). In one embodiment, hypervisor 125 manages these
mappings in a transparent fashion, so that guest OS 135 and
applications executing on virtual machine 130 interact with
virtual processors 260 as though they were actual physical
processors.

System load monitor 137 comprises software that monitors
one or more measures of system load (e.g., the number of

US 9,164,809 B2

5

physical processor cycles consumed executing a particular
virtual processor of VM 130, the number of context switches
per unit of time between threads executed by VM 130, the
percentage of physical processor cycles consumed by context
switches between threads executed by VM 130, the number of
threads in a runnable state executing concurrently, etc.) for
one or more of virtual processors 260-1 through 260-K. Sys-
tem load monitor 137 also comprises software that detects
when a measure of system load exceeds a threshold, and,
upon such detection, transmits a request to hypervisor 125 for
an additional virtual processor. Embodiments of system load
monitor 137 are described in more detail below with respect
to the flow diagrams of FIGS. 3 and 4.

FIG. 3 depicts a flow diagram of one embodiment of a
method 300 by which a guest operating system requests an
additional virtual processor for its virtual machine. The
method is performed by processing logic that may comprise
hardware (circuitry, dedicated logic, etc.), software (such as is
run on a general purpose computer system or a dedicated
machine), or a combination of both. In one embodiment, the
method is performed by the computer system 100 of FIG. 1,
while in some other embodiments, some or all of the method
might be performed by another machine. It should be noted
that blocks depicted in FIG. 3 can be performed simulta-
neously or in a different order than that depicted.

Atblock 301, guest operating system 135 monitors one or
more measures of system load and detects that a measure of
system load exceeds a threshold. Embodiments of operations
involved in performing block 301 are described in more detail
below with respect to FIG. 4. In one embodiment, block 301
is performed by system load monitor 137.

At block 302, guest operating system 135 transmits to
hypervisor 125 a request for an additional virtual processor
260 for virtual machine 130 (e.g., for a virtual processor
260-(K+1)), in response to the detection at block 301. In some
embodiments, the request may specity a particular virtual
non-uniform memory access (NUMA) node for the addi-
tional virtual processor, or, more generally, may specify for
the additional virtual processor a particular group of proces-
sors called a proximity domain. It should also be noted that in
some other embodiments, the request for an additional virtual
processor 260 may be precipitated by a human guest admin-
istrator (e.g., in anticipation of an increase in system load,
etc.), rather than by system load monitor 137 detecting the
exceedance of a threshold at block 301. At block 303, guest
operating system 135 receives a return result from hypervisor
125 (e.g., an indication that the request was denied, an indi-
cation that the request was granted, an indication that the
request was granted along with an identifier of the additional
virtual processor, etc.).

FIG. 4 depicts a flow diagram of one embodiment of a
method by which a guest operating system monitors and
detects system load conditions. It should be noted that blocks
depicted in FIG. 4 can be performed simultaneously or in a
different order than that depicted.

Atblock 401, guest operating system 135 monitors one or
more measures of system load for each individual virtual
processor of VM 130 (e.g., for virtual processor 160-1, for
virtual processor 160-2, etc.). In one embodiment, the mea-
sures of system load may include one or more of the follow-
ing, each of which may be computed by system load monitor
137 of guest operating system 135:

the number of physical processor cycles consumed execut-

ing a particular virtual processor;

the number of context switches per unit of time between

threads executed by a particular virtual processor;

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the number of context switches per unit of time between
threads belonging to the same process executed by a
particular virtual processor;

the number of context switches per unit of time between

threads belonging to different processes executed by a
particular virtual processor;

the percentage of physical processor cycles consumed by

context switches between threads executed by a particu-
lar virtual processor;

the percentage of physical processor cycles consumed by

context switches between threads belonging to the same
process executed by a particular virtual processor;
the percentage of physical processor cycles consumed by
context switches between threads belonging to different
processes executed by a particular virtual processor;

the number of threads in a runnable state executing con-
currently by a particular virtual processor;

the number of processes in a runnable state executing con-

currently by a particular virtual processor; or

the number of applications in a runnable state executing

concurrently by a particular virtual processor.

At block 402, guest operating system 135 checks whether
any measure for any of the virtual processors exceeds a
respective threshold. It should be noted that in some embodi-
ments, the respective thresholds may be defined by an admin-
istrator via a configuration file or graphical user interface,
while in some other embodiments, the respective thresholds
may be hard-coded into system load monitor 137, while inyet
other embodiments, the respective thresholds may be defined
in some other manner. If any measure for any of the virtual
processors exceeds a respective threshold, then execution
continues at block 302 of FIG. 3, otherwise execution pro-
ceeds to block 403.

Atblock 403, guest operating system 135 computes one or
more measures of system load for each virtual NUMA node
ofVM 130 (e.g., for each set of virtual processors 260 belong-
ing to a respective virtual NUMA node of VM 130), at least
some of which may be derived from the measures monitored
atblock 401. In one embodiment, the measures of system load
may include one or more of the following:

the number of physical processor cycles consumed execut-

ing virtual processors of the virtual NUMA node;

the number of context switches per unit of time between

threads executed by the same virtual processor (e.g., the
number of context switches per unit of time for each
individual virtual processor that belongs to a given vir-
tual NUMA node, averaged over the virtual processors
belonging to the NUMA node, etc.);

the number of context switches per unit of time between

threads belonging to the same process (e.g., averaged
over the virtual processors belonging to the NUMA
node);

the number of context switches per unit of time between

threads belonging to different processes (e.g., averaged
over the virtual processors belonging to the NUMA
node);

the percentage of physical processor cycles consumed by

context switches between threads executed by the same
virtual processor (e.g., the average of the percentages for
each of the virtual processors belonging to the NUMA
node, etc.);

the percentage of physical processor cycles consumed by

context switches between threads belonging to the same
process (e.g., averaged over the virtual processors
belonging to the NUMA node);

the percentage of physical processor cycles consumed by

context switches between threads belonging to different

US 9,164,809 B2

7

processes (e.g., averaged over the virtual processors
belonging to the NUMA node);

the number of threads in a runnable state executing con-

currently (e.g., an average of the virtual processors
belonging to the NUMA node, a maximum of the virtual
processors belonging to the NUMA node, etc.);

the number of processes in a runnable state executing con-

currently (e.g., an average of the virtual processors
belonging to the NUMA node, a maximum of the virtual
processors belonging to the NUMA node, etc.); or

the number of applications in a runnable state executing

concurrently (e.g., an average of the virtual processors
belonging to the NUMA node, a maximum of the virtual
processors belonging to the NUMA node, etc.).
In one embodiment, block 403 is performed by system load
monitor 137.
At block 404, guest operating system 135 checks whether
any of the measures computed at block 403 exceed a respec-
tive threshold. If so, execution proceeds to block 302 of FIG.
3, otherwise execution proceeds to block 405.
Atblock 405, guest operating system 135 computes one or
more measures of system load across all virtual processors of
VM 130, at least some of which may be derived from the
measures monitored at block 401. In one embodiment, the
measures of system load may include one or more of the
following:
the number of physical processor cycles consumed execut-
ing all of the virtual processors of VM 130 (i.e., virtual
processors 260-1 through 260-K);

the number of context switches per unit of time between
threads executed by the same virtual processor (e.g., the
number of context switches per unit of time for each
individual virtual processor, averaged over all K virtual
processors, etc.);

the number of context switches per unit of time between

threads belonging to the same process (e.g., averaged
over all K virtual processors);

the number of context switches per unit of time between

threads belonging to different processes (e.g., averaged
over all K virtual processors);

the percentage of physical processor cycles consumed by

context switches between threads executed by the same
virtual processor (e.g., the average of the percentages for
each of the K virtual processors, etc.);
the percentage of physical processor cycles consumed by
context switches between threads belonging to the same
process (e.g., averaged over all K virtual processors);

the percentage of physical processor cycles consumed by
context switches between threads belonging to different
processes (e.g., averaged over all K virtual processors);

the number of threads in a runnable state executing con-
currently (e.g., an average of all K virtual processors, a
maximum of all K virtual processors, etc.);

the number of processes in a runnable state executing con-

currently (e.g., an average of all K virtual processors, a
maximum of all K virtual processors, etc.); or

the number of applications in a runnable state executing

concurrently (e.g., an average of all K virtual processors,
a maximum of all K virtual processors, etc.).
In one embodiment, block 405 is performed by system load
monitor 137.

At block 406, guest operating system 135 checks whether
any of the measures computed at block 405 exceed a respec-
tive threshold. If so, execution proceeds to block 302 of FIG.
3, otherwise execution continues back at block 401.

FIG. 5 illustrates an exemplary computer system within
which a set of instructions, for causing the machine to per-

10

20

25

30

35

40

45

8

form any one or more of the methodologies discussed herein,
may be executed. In alternative embodiments, the machine
may be connected (e.g., networked) to other machines in a
LAN, an intranet, an extranet, or the Internet. The machine
may operate in the capacity of a server machine in client-
server network environment. The machine may be a personal
computer (PC), a set-top box (STB), a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

The exemplary computer system 500 includes a processing
system (processor) 502, a main memory 504 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)),
a static memory 506 (e.g., flash memory, static random access
memory (SRAM)), and a data storage device 516, which
communicate with each other via a bus 508.

Processor 502 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 502 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, or a pro-
cessor implementing other instruction sets or processors
implementing a combination of instruction sets. The proces-
sor 502 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
processor 502 is configured to execute instructions 526 for
performing the operations and steps discussed herein.

The computer system 500 may further include a network
interface device 522. The computer system 500 also may
include a video display unit 510 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 512 (e.g., a keyboard), a cursor control device 514
(e.g., a mouse), and a signal generation device 520 (e.g., a
speaker).

The data storage device 516 may include a computer-read-
able medium 524 on which is stored one or more sets of
instructions 526 (e.g., instructions corresponding to the
method of FIG. 3, etc.) embodying any one or more of the
methodologies or functions described herein. Instructions
526 may also reside, completely or at least partially, within
the main memory 504 and/or within the processor 502 during
execution thereof by the computer system 500, the main
memory 504 and the processor 502 also constituting com-
puter-readable media. Instructions 526 may further be trans-
mitted or received over a network via the network interface
device 522.

While the computer-readable storage medium 524 is
shown in an exemplary embodiment to be a single medium,
the term “computer-readable storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instructions for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present invention. The term
“computer-readable storage medium” shall accordingly be

US 9,164,809 B2

9

taken to include, but not be limited to, solid-state memories,
optical media, and magnetic media.

Although the operations of the methods herein are shown
and described in a particular order, the order of the operations
of'each method may be altered so that certain operations may
be performed in an inverse order or so that certain operation
may be performed, at least in part, concurrently with other
operations. In another embodiment, instructions or sub-op-
erations of distinct operations may be in an intermittent and/
or alternating manner.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

What is claimed is:

1. A method comprising:

detecting, by a processor executing a guest operating sys-

tem of a virtual machine, when a measure of system load
for a virtual processor exceeds a threshold; and

in response to the detection, transmitting to a hypervisor,

by the guest operating system, a request for an additional
virtual processor for the virtual machine, wherein a
memory of the virtual machine is non-uniform memory
access (NUMA), wherein the request by the guest oper-
ating system specifies a virtual NUMA node within the
virtual machine for the additional virtual processor, and
wherein the measure of system load for the virtual pro-
cessor is based on a percentage of processor cycles con-
sumed by context switches between threads executed by
the virtual machine, a count of context switches per unit
of time between threads executed by the virtual proces-
sor and a count of threads in a runnable state executing
concurrently.

2. The method of claim 1 wherein the measure of system
load pertains to a first virtual processor of the virtual machine.

3. The method of claim 1 wherein the measure of system
load pertains to all virtual processors of the virtual machine.

4. The method of claim 1 wherein the measure of system
load pertains to a first set of virtual processors belonging to a
particular virtual NUMA node within the virtual machine.

5. The method of claim 1 wherein the context switches are
between threads belonging to different processes.

6. The method of claim 1 wherein the context switches are
between threads belonging to the same process.

7. The method of claim 1, further comprising receiving an
indication that the request was granted along with an identi-
fier of the additional virtual processor in response to the
request.

8. An apparatus comprising:

a memory to store a virtual machine; and

a processor, operatively coupled to the memory, to:

execute the virtual machine,

detect, via a guest operating system of the virtual
machine, when a measure of system load for a virtual
processor exceeds a threshold, and

in response to the detection, transmitting to a hypervisor,
via the guest operating system, a request for an addi-
tional virtual processor for the virtual machine,
wherein the measure of system load for the virtual
processor is based on a percentage of processor cycles

10

15

20

25

30

35

40

45

50

55

60

10

consumed by context switches between threads
executed by the virtual machine, a count of context
switches per unit of time between threads executed by
the virtual processor and a count of threads in a run-
nable state executing concurrently.

9. The apparatus of claim 8 wherein the request specifies a
proximity domain of the virtual machine for the additional
virtual processor.

10. The apparatus of claim 9 wherein the memory is non-
uniform memory access (NUMA), and wherein the proximity
domain is a virtual NUMA node.

11. The apparatus of claim 8 wherein the measure of sys-
tem load pertains to a first virtual processor of the virtual
machine.

12. The apparatus of claim 8 wherein the measure of sys-
tem load pertains to all virtual processors of the virtual
machine.

13. The apparatus of claim 8 wherein the context switches
are between threads belonging to different processes.

14. The apparatus of claim 8 wherein the context switches
are between threads belonging to the same process.

15. The apparatus of claim 8 wherein the processor is
further to receive, in response to the request, an indication that
the request was granted along with an identifier of the addi-
tional virtual processor.

16. A non-transitory computer readable storage medium,
having instructions stored therein, which when executed,
cause a processor to:

detect, by a guest operating system of a virtual machine,

when a measure of system load for a virtual processor
exceeds a threshold;

inresponse to the detection, transmit to a hypervisor, by the

guest operating system, a request for an additional vir-
tual processor for the virtual machine, wherein a
memory of the virtual machine is non-uniform memory
access (NUMA), wherein the request by the guest oper-
ating system specifies for the additional virtual proces-
sor a highly-loaded virtual NUMA node within the vir-
tual machine, and wherein the measure of system load
for the virtual processor is based on a percentage of
processor cycles consumed by context switches between
threads executed by the virtual machine, a count of con-
text switches per unit of time between threads executed
by the virtual processor and a count of threads in a
runnable state executing concurrently.

17. The non-transitory computer readable storage medium
of claim 16 wherein the measure of system load is in view of
a number of threads in a runnable state executing concur-
rently.

18. The non-transitory computer readable storage medium
of claim 16 wherein the measure of system load is further
based on a number of processes in a runnable state executing
concurrently.

19. The non-transitory computer readable storage medium
of claim 16 wherein the measure of system load is in view of
a number of applications in a runnable state executing con-
currently.

20. The non-transitory computer readable storage medium
of claim 16 wherein the instructions further cause the pro-
cessing device to receive an indication that the request was
granted along with an identifier of the additional virtual pro-
cessor in response to the request.

#* #* #* #* #*

